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On the stochastic approach to cluster size distribution during 
particle coagulation: I. Asymptotic expansion in the 
deterministic limit 

P Donnelly and S Simons 
School of Mathematical Sciences, Queen Mary and Westfield College, University of 
London, Mile End Road, London E l  4NS, UK 

Received 1 July 1992, in final form 18 November 1992 

Abstract. Consideration is given to the stochastic problem of the coagulation of particles 
for the case of a size-independent coagulation kernel, and expressions are derived for the 
expectation value, variance and covariance of the cluster size distribution function, for 
both a discrete and a continuous spectrum of cluster sizes. We develop an asymptotic 
expansion in V-' of these quantities (where V is the spatial volume), showing that as 
V+m the above expectation value tends to thd deterministic result, and obtaining an 
explicit form for the first-order deviation from this expression for large (but finite) V. 
Analogous resilts i r e  derived for the variance and covariance in the limit of large l! A 
discussion is given of the extent to which stochastic effects can produce significant changes 
to the deterministic results. ' . 

1. Introduction 

Consider a number No of identical particles, each of volume U, distributed 
homogeneously in a spatial volume .V with number density No (=No f V). We postulate 
that with the passage of time the particles coagulate, producing clusters of varying 
sizes, and two approaches have conventionally been used for the quantitative discussion 
of this phenomenon. The first, pioneered by Smoluchowski, takes V to be inf inhand 
proceeds to formulate the relevant deterministic equations for M d ( t ) ,  the total cluster 
density (number per unit volume) at time t, and for #( t ) ,  the density of clusters 
containing r of the original particles. Assuming the coagulation kernel Q to be constant 
(a reasonable approximation for Brownian coagulation), it then transpires that 

P(T) = (Mi1+ T)-' (1) 

and 

( 
= No + r+1 

where T =iQt (Friedlander 1977). 
The second approach to coagulation is a stochastic one and early work using this 

technique includes that of Scott (1967), Warshaw (1967) and Marcus (Hidy and Brock 
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1972). These workers were all basically concerned with placing the standard general 
coagulation equation for an infinite medium on a better theoretical foundation. 
However, as they acknowledge in their papers, each of their treatments required them 
to make assumptions in order to reach the desired results. These assumptions were 
physically plausible in some, though not all, situations, but mathematically they were 
unproved. Thus, Scott and Marcus assumed that the cluster distribution was uncorre- 
lated in order to circumvent the well known closure problem, while'warshaw's assump- 
tion was that certain variables were multinomially distributed. The essential criticism 
of this early stochastic work is thus that it is characterized by a lack of mathematical 
rigour. 

The next stage in implementing the stochastic approach is typified by the work of 
Williams (1979) and Arcipiani (1980) who developed a mathematically rigorous 
approach to the stochastic problem associated with the total number of clusters arising 
in a coagulating system of particles. They obtained somewhat complicated general 
expressions for the expectation value and variance of the total cluster number, but did 
no attempt to show how these expressions gave rise to the deterministic result (1) in 
the appropriate limit. Nor were they concerned with the number of clusters of a 
specified size. Following on this came the work of Hendriks et ai (1985) and 
Merkulovich and Stepanov (1986). They considered ( N ( t ) ) ,  the expectation value of 
N(r ) ,  the total number of clusters at time t, and showed rigorously that if V-tm 
keeping J V ~  constant, then {J( t ) )  [=V-'(N(t))J tends to the result (1). Let us now 
consider the situation when V is large but finite. It is then possible to develop an 
expression for ( N ( t ) )  as a power series in V-', the leading term of the series being 
the result (1) and the next term (proportional to V-' )  giving the dominant correction 
to this deterministic result in the limit of large but finite V. Additionally the correspond- 
ing series for Var(J) can also be obtained, and for this the leading term is proportional 
to V-I. Detailed calculations of these quantities with a V-' dependence (which measure 
the initial departure from a deterministic regime) have been carried out independently 
by Merkulovich and Stepanov (1986) and by Simons (1991). 

The purpose of the present work is to develop a stochastic treatment, analogous 
to that outlined above, for Jr the number density of clusters of r particles, and for 
which the deterministic result is embodied in (2). That is, we will show by a mathemati- 
cally rigorous stochastic approach that in the limit of V+m with No constant, (J,) 
tends to the result (2) and we will obtain the first order correction to this for large but 
finite V, together with the corresponding terms of Var(Jr) and Cov(Jq, Jr)-these all 
being proportionally to V-'. A calculation of these corrections is of value for the 
following reasons. Firstly, it yields a simple analytic result for the relevant quantity, 
showing explicitly how the V = m  limit is approached. This should be contrasted with 
a complete calculation for general V (see the paper of Williams (1979)) where the 
complex dependence on No and t prevents any easy understanding of this behaviour. 
Secondly, the correction formulae may be used to estimate quantitatively the differences 
between the stochastic and deterministic results for finite V,  and hence to decide on 
the regime where stochastic effects may become significant. We shall return to this 
point later in the discussion of section 4. 

In our treatment we first deal with a non-zero value for our initial particle size uo 
and a finite value for the initial particle density No. Subsequently we consider the 
limiting form of the analysis when vo+ 0 and No -f 00 with + = uoJ0 finite. This allows 
the formulation to be given in terms of a continuous variable U which specifies the 
amount of particulate material in a cluster. 

P Donnelly and S Simons 
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2. Basic theory 

2.1. Discrete case 

We consider the following stochastic model for the coagulation of an initial collection 
of No particles. Denote by N ( t )  the number of clusters present at time t and for 
convenience label the clusters a, ,  . . . , uN(,) in U arbitrary way. We suppose that as S --f 0 
P(clusters a,anda,coagulateduring(f, t+s)lN(t)=k)=2S+0(8’) 

that these events for different pairs of clusters are independent and further are indepen- 
dent.of the past history of the process. Note that the above expression for P corresponds 
to a coagulation rate which is independent of cluster size. We begin by calculating 
(Nr ( t ) ) ,  the expectation value of N,(t) the number of clusters containing r of the 
original particles at time f. To do this we label the original particles 1 , 2 , .  . . , No and 
define 

i , j = l , . .  ., k, i # k  

x:( t )  = 1 if at time t particle labelled i is in a cluster of size r 

= 0 otherwise. 

Then 
No 

(3) N,(i) = r-’ 1 x l ( t )  ~~ 

i = l  

leading to 
No 

( N , ( t ) ) =  C (xXt)) 
,=1 

= (No/r)(xXt)) (4) 
since, by symmetry, each of the random variables x l ( t )  has the same distribution. 
Further, since x: only takes the values 0 and 1, it follows that 

(NJt))  = (No/r)P(xKf) = 1) ( 5 )  
where P(x;(t) = 1) is the probability that the particle labelled 1 is in a cluster of size 
r at time t. 

The dynamics of the,stochastic model for coagulation considered here are identical 
(subject to a time scaling) to those of a process called the n-coalescent which arises 
in mathematical genetics (Kingman (1982) with n = No in our notation). The No- 
coalescent is a process whose values are equivalence relations or partitions of the set 
{ ~ l ,  2 , .  . . ,No] with initial value being the partition with No classes {l}, {2 ] ,  . . . , {No], 
and for which each existing pair of classes coalesces at rate 1 .  If the initial particles 
in the coagulation model are labelled 1 ,2 , .  . . , No, the correspondence between the 
processes is that a class {i , ,  . . . , ir}  in the No-coalescent at time t is equivalent to a 
cluster in the coagulation model at time f which is of size r and consists of exactly 
the particles labelled i,, . . . , i,. We can thus translate results about the N,-coalescent 
intoresults about the coagulation system. In particular, given that there are k clusters, 
the probability that there are m, clusters of size r ( r  = I,?, . . . , No, m, 0, m, + . . . + 
mNo = k, m ,  +2m,+.  . .+ NomNo = No) is 

m ,  ! m, ! . . . mNo ! 
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(see, for example, Tavare (1984)), and this probability does not depend on the time 
at which the k clusters occur. It is a straightforward combinatorial exercise to check 
that this distribution of cluster sizes is the same as that which would be obtained if 
the No particles were arranged on a circle with k 'barriers' being inserted in the No 
spaces between the particles, with all (2)  possible choices of locations being equally 
likely and with the cluster sizes being given by the number of particles between each 
of the k pairs of neighbouring 'barriers'. From this it follows by another easy com- 
binatorial argument that 

P(x;( t) = 11 N ( t )  = k) = P(particle labelled 1 in cluster of size rlN(r) = k )  

P Donne& and S Simons 

2 S k S No - r + 1 

rk(k - l ) ( N o  - k) (  No- k - 1 )  . . . (No-  k - r+2) 
No(No - 1 )  . . . (No - r )  

2 S k S No - r+ 1. - - 

Averaging over all values of k, we thus obtain from (5) that the expectation value of 
N,(t)  is given by 

No k(k- l ) (No-  k )  . . . (No- k -  r+2) 
( N O -  1) . . . (No-  r)  = Z P(N( t )  = k )  

k = 1  

(6) 
- ( N ( t ) [ N ( t )  - 1][  No- N ( t ) ] [ N o -  N(t) - 11.. . [No- N ( t )  - r+2] )  - 

(No - l ) ( N o  - 2)  . . . (No - r )  
This result holds for r =s No - 1 corresponding to the above conditions on k For r = No, 
we have 

( N N ~ ( ~ ) ) = P ( N ( ~ ) =  1). (6') 
We now consider the variance of N,(t) for which we require to calculate ([N,( t)I2). 

It~follows from (3) and (4) that 

= (No/r2)(xl)+ r-2No(No - 1)CU;x;) 

= I-'( N,) 

+ r-*No(No- l)P(particles 1 a d 2  in same cluster of size r )  

+ r-2No(~No- l)P(particles 1 and 2 in different clusters ofsize r).  (7) 
Now, it follows from ( 5 )  that 

r ( r - l W J  P(partic1es 1 and 2 in same cluster of size r )  = 
No(% - 1 )  

and hence that 

(N~)=(N,)+r-2No(No-1)P(particles 1 and2indifferentclustersof size r ) .  (8) 
Similarly we obtain that for p # q, 

(N,Nq)=p-'q-'No(No- l)P(particle 1 in clusterofsizep and 

particle 2 in cluster o f  size q ) .  (9) 
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Now it is clear that for all p and q such that p + q < No, the probability that particle 
1 is in a cluster of size p and particle 2 is in a different cluster of size q will be the 
product of the probabilities that particle 1 is in a cluster of size p, that particle 2 is 
not in the same cluster as particle 1 ,  and that particle 2 is in a cluster of size q chosen 
from the remaining No-p particles. Thus if there exists a total of k clusters, it follows 
from (8) and (9)  that for all p and q such that p + q  < No,  

k ( k - 1 ) Z ( k - 2 ) ( N 0 - k ) ( N o - k - l ) .  .. ( N o - k - p - q + 3 )  
( N o - l ) ( N 0 - 2 )  ... ( N o - p - q )  . (10) = (NP)8,, + 

On averaging this over all values of  k, using the same technique as was employed 
above for (N,), we obtain the result that for p + q < No,  the expectation value of NpNq, 
whatever the value of k, is given by 

(11) 
This result requires modification if p + q = No, corresponding to N = 2. We then obtain 

2pq * P ( N = 2 ) .  (11') No(No,-l) 
I f p + q > N o ,  (NpN9)=Ounlessp=qGNo.  Forthatsituation(N:)=(N,). 

O"NJ = (N,)a,, + 

From the above results we may readily calculate 
Vat( N,)  ={ N:}-( N,)' 

C0v(Np, N9) = (NpNq) - (Np)(Nq) .  

and 

2.2. ~ Continuous case 

This corresponds to the situation N o + w  and uo+O so that possible cluster volumes 
form a continuum. We then specify the cluster volume by a variable x defined as the 
ratio of the actual cluster volume to the total volume of particulate material. The 
expectation value of the cluster size distribution is now specified by a functionf(x, t ) ;  
this is defined byf(x, t )  dx being the expectation value of the number of  clusters each 
containing a fraction of the total material in the interval x to x+dx. Since r =  xN,, it 
follows from (6)  that as N is finite for f > 0, 
f(x) = lim No(N,) 

No-- ~. 

(No-  r - I ) .  . . [ N o -  r -  ( N  -2 ) ]  
= lim N ( N - I )  - 

NotCO ( 
~ (cI1) ( N 0 - 2 )  ... [ N o - ( N - l ) l  

d * ( ( l - ~ ) ~ )  
= { N ( N  - 1 )  ( 1  - X) "-3 = 

dx2 
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For the calculation of variance and covariance of the cluster numbers a similar 
approach to that used above may be employed, whereby the limit as No+m of the 
relevant formula in section 2.1 is considered. Let MA be the number of clusters with 
proportional volume x lying in the interval [al, az] and let Ms be the number of 
clusters with proportional volume y lying in the interval [b, ,  b,]. Further, let R be the 
rectangle in the x-y plane defined by R = {(x, y ) ,  a, < x < a,, bl < y < bz}, S the triangle 
defined by S = { (x ,  y ) ,  0 < x < 1, 0 < y < 1 - x) and T the line segment defined by 
T = { (x ,  y), 0 < x < 1, y = x}. Then the basic result that follows from the above limiting 
procedure is that 

(MAMB) = f(s 0 dx+ IS,,, g(x, y ,  t )  dx dy+2ZP(N = 2 )  + S.,,Sb,,P(N= 1) 
TnR 

(13) 
where 

g(x ,  y, t )  = (N( N - 1)'( N - 2)(1- x - Y)~- ' )  = -J3((N - 1)( 1 - X -y)N)/aX' 

and Z is the length of the interval in x intercepted along the line y = 1 - x by R, 
(14) 

3. Asymptotic expansion 

3.1. Discrete case 

We proceed to consider how the results of the last section yield the deterministic 
equation (2) in the appropriate limit, and to this end we follow Van Kampen (1981) 
in developing an expansion of the various quantities in powers of V-I. We therefore 
suppose the clusters to be homogeneously distributed within spatial volume V, and 
rewrite (6) in terms of N =  V-lN and N,= V-'N,. This yields 

(15) 
We expand the explicit V dependent terms here as a power series in V-I, retaining 
the first two terms. This gives 

( J v r (  t ) )  Kr(N2(No- N )  '-') - V-'Ni'[(N( No-&)'-') 

+ i ( r  - 1)(r-2)(@(NO- -fr(r  + l )Ki1(N2(No - N)'-')]. (16) 

The various expectation values appearing here depend implicitly on V. It is shown in 
appendix 1 that if g ( N )  is any polynomial in N, then expansion of ( g ( N ) )  as a power 
series in V-' yields 

and this allows us to obtain the first two terms of a power series expansion in V-' for 
each expectation value occurring above. We use both terms of (17) for the first term 
of (16) and the first term of (17) for the remaining terms of (16). Making use of (1) 
in the form P( 7) = No/( 1 + X), where X = Nor, gives us finally the result 

1. (18) 
[rX2-$(rz-6r-l)X-fr(r  - l)] 

(1+X)2 
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The first term on the right-hand side is the deterministic result ( 2 ) ,  while the remainder 
of the expression gives the first order correction to this, proportional to V-'; it is thus 
clear that 

lim (Nr(7))=N;(~). 
V-CC 

Let 

(N,) = A$+ AN,. 

Then for r> 1 the sign of AN, changes as X increases, being negative for small X and 
positive for large X.  It also follows from (18) that in general [AN,,l increases with 
increasing r, the r dependence being approximately quadratic for small X and linear 
for large X.  The mode of derivation of (18) shows it to be valid only if IAN,] << N: and 
this gives a lower limit on V for the equaiion to hold, this limit increasing as r increases. 
For r >> 1,  IAN,[/A$ has its maximum value -r2/2N0V at X = 0~ and thus the lower 
limit on V will be >>r2/2N0. Alternatively, for given V ( 1 8 )  will hold for r2<< 2N0V= 
2N0.  Finally we note that for X<< 1 ,  

(Nl (T) )  = N0-2(N0- v-')x (19a) 

(.I\p,(T))=xr--l[N0-&r(r - 1) v-'1 r a 2  (19b) 

(N,(T)) = X 2 ( N 0 +  rv- ' ) .  (20) 

COV(Np, .y,) = W p N q ) - ( J v p ) ( N q )  (21) 

(NpNq) = Ypq + V-'(Np)%, (22) 

("P(No-N)'-2(l -N-1v-1)2(1-2.$f-'V-') 

while for X >> r, 

We now consider the variance of N, and covariance of Np and Nq. We begin with 

and use (1 1) to give 

where 

(23) y~ = 
x [l - ( N 0 - N ) - ' v - 7 . .  . [l - (s -3) (No-N)-1v-11)  

P4 N;(l-&'V-1)(1-2N;1v-1).  . . (l-sN,'V-1) 

with s = p + q .  We expand the explicit V dependent terms here as a power series in 
V-', retaining the first two terms. This yields 

Yw = N ; y P ( N 0  - N y )  - v-'N;s[4(N3( No - N )  "-2) 

+ $( s - 3) ( s - 2 ) ( P ( N ,  - JY)'-~) - $S ( s + l)N;'("P(No - N )  '-31. (24) 

The various expectation values appearing here depend implicitly on V, and hence 
employing the same approach as that used above in the treatment of (N,) allows us 
to obtain an explicit form for the first two terms of a power series expansion in V-' 
of Ypq. After some manipulative algebra, this finally takes the form 

1. [ 2 x 3 - ( 4 ~  - 5 ) x 2 + s ( s - s ) x + b ( s  - 111 
Nox'-2  no- v-1 YP4 = (1 + * ) S f 2  ,3(1 + X ) 2  (25) 

We then obtain from ( 2 1 )  that for p # q, 
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COV(NP, N,) = - ( x;)-p2:::) 
x [ 2 P - ( p +  q - 5 ) x 2 + 2 ( p  - l)(q-I)Xf3pqJ 

while for p = q, 

(26) 

12x3- (2p -5)x2+2(p - l)'X+3P*] . (27) 

We note that Cov(Np, N,) and Var(Np) both exhibit a V-I dependence and therefore 
tend to zero as V-tm. Further, apart from small X values for p = l ,  the value of 
Var(Np) is dominated by the constant term inside {. . .}, and thus in general, Var(N,) - 
N:. It is clear that Cov(Np, N,) < 0 for sufficiently small X and also for sufficiently 
large X. If p + q S 5, Cov(Np, N,) < 0 for all X and the same will be true for p,  q >> 1 
if p"p/q>p-' where p = 7 + M = 1 4 .  For values of p / q  outside this interval 
Cov(Np, A",) > 0 for some X .  

I XP-1 

b - 3 0  + X )  p+; 

3.2. The continuous ease 

In considering the asymptotic limit of the continuous &se we wish to make contact 
with the conventional mode of description for the corresponding deterministic situation. 
We therefore specify the cluster size distribution by a function n(v) such that n ( v )  du 
is the number of clusters per unit volume of space whose volumes lie between v and 
v+du. The expectation value of the number of clusters for the whole system whose 
volumes lie between v and v+dv is thus V(n( U)) dv which may be equated tof(x) dx 
wheref(x) is defined in (12). To connect v and x we,introduce 6, the proportion of 
space occupied by particulate matter, when it follows that 

V = VQX (28) 

and hence 

( n ( v ) ) = f ( x ) /  V26, 

= Q$ (( 1 -$) vx). 

We obtain the first two terms of a power series expansion in V-' of y = (1 -U/ V9) vx 
by considering 

lny=V.Nln 1-- ( 3 
-vN U 2 N  

9 2 v 9  
- 2+.  . . 

which gives 
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Equation (17) may then be used to evaluate the first two terms of a power series 
expansion  in V-' of ( y ) .  This yields 

since Nd(7) = 1/r as N , = w  Equation (29) now gives 

The first term here is the deterministic result n"(u) as derived in appendix 2 and the 
second term is the first-order correction to this, proportional to V-'. We note that (32)  
can be expressed more concisely if we define a dimensionless volume w = v/U, where 
8= $INd= 'p~, and let m(w) dw be the number of clusters per unit volume of space 
whose dimensionless volumes lie between w and w+dw. We then obtain 

( m ( w ) ) = N d  e-w+ P w ( 1  -fw) e-'". (33)  

The correction term V-'w(l -fw) e-'" will be positive for w < 3  and negative for w > 3. 
For w >> 1, the ratio of the magnitude of this term to the deterministic result will be 
-w2/3Nd, and hence for (33) to be valid it is necessary that 

w2<< 3 N d .  (34)  

To calculate the asymptotic limit of the covariance and variance in the continuous 
case we begin by defining LA and LB as the numbers of clusters per unit volume of 
space whose own volumes lie respectively within the interval [ a l ,  a,] and within the 
interval [PI, p,]. Now, it follows from ths earlier definition that w = Ndx and hence 
the above condition (34)  for the asymptotic theory to hold yields 

xc( (3/Nd)"'c< 1. (35)  

It then follows from the previous discussion, together with (131, that for the situation 
where.the intervals [a1, a,] and [PI; p23 are disjoint,, 

Cov(L,, LB)= 1'' ["'F(u, U )  du du 

where 

We employ the techniques used above to expand F( U, U) as a power series 'in V-', 
and after some manipulative algebra obtain as the leading term 

'pr 'p-7- 
.F(U, U)='- 

3 V'p'73, 

From (13) and (32) we also obtain the result 

(37) 
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where G(u)=exp(-u/+r)/+rZ. To evaluate the above integrals we introduce the 
corresponding dimensionless cluster volumes w = v/+r ,  w'= U/+., when letting c l  = 
cq/br, c 2 = a 2 / + r ,  d , = p , / + r ,  dz=p2/+r we finally obtain 

Cov(L,, LE)  = - (Nd/3  V) [ (Zc ,d ,  + c1 + d ,  + 2 )  e-(cl+dl)+ (2c2dz+ cz+ d z + 2 )  e-(c2+dz) 

P Donnelly and S Simons 

- (2c,dz+ e ,  + d2+2) e-(C:+dz) - (2c2d, + c,+ dl  +2) e-('~+~r)] 

- ( ~ c , c 2 + c , + c 2 + 2 )  e-('~+~z)]}. (40) 

(39) 

Var(L,) = (Nd/ V){(e-'l -e-%) -?[(c:+ cI + 1) (c$+ cz+ 1) e-"2 

Since F( U, U) c 0 for all U > $+r, U > f + ~  it follows that Cov(L,, LB) is always negative 
if c , a f  and a,==.. 

4. Discussion 

We have shown in this paper that a rigorous stochastic approach yields in the limit 
of V+co the standard deterministic results for cluster size distribution in a system of 
coagulating particles. In addition we have obtained for finite V explicit forms for the 
leading terms of expressions measuring the departure from this deterministic behaviour. 
We now proceed to consider to what extent these departures can lead to conclusions 
significantly different from those given by the usual deterministic approach, and to do 
this we deal with the total number of clusters of r particles lying within V According 
to the deterministic approach this number will be given by N f ( r )  = V N f ( r )  with N:(r) 
defined in (Z), and this will represent the exact number of clusters of r particles at 
time r. That is, if we repeat the measurement of N,(T) on a set of systems each with 
the same V and initial No, we would expect to obtain exactly the same result N:'(r) 
in each case. According to the present stochastic approach, however, no prediction is 
made about the result of a single measurement of N,(r)-rather, the theory predicts 
a value for (N,(r)), the mean of a large number of such measurements made on initially 
identical systems. Further, in the stochastic approach a prediction is made of Var( N,(r)) 
which measures the extent to which individual measurements are likely to deviate from 
their mean value (Nr(r)}.  Now, it was shown in section 3.1 that apart from small values 
of X for r = 1, Var(N,) = yNf where y is close to unity. Further, we will show presently 
that for N :  significantly greater than unity (N,)= N:, and hence for such a situation 
our stochastic theory predicts the mean of a large number of measurements to be close 
to N:, but with any individual measurement deviating from this value by an amount 

We now consider under what circumstances the value of (N,} can differ significantly 
-( N : y .  

from N!, and to do-this we begin with the result (obtained from (18)), 

x r - l  [ r X z - f ( r 2 - 6 r -  1)X-A ( 
2r r-l)l]. (41) 

( N r ( d ) = ( l + X ) r + I  [NO+ (1+X)2 

Initially we suppose No and r to be given and choose for X the value i ( r -  1) which 
maximizes N:[ = NoX'-l/( l+X)'+'].  For this value of X we then have 
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We consider the situation when (N,(T))'differs from Nf by at least IO%, and it is clear 
from (42)  that this corresponds to r 3  N 0 / 3 .  Since NoS3r, it then follows that 

which is less than unity for r >  1. This in tum implies the result quoted above that for 
Nf significantly greater than one, the difference between ( N J  and Nf is very small. 
T h i s  difference can only become significant (in excess of about 10%) when (N,)<1 
which corresponds to a situation in which the stochastic properties of the system are 
already apparent in that successive measurements of N, at time T on initially identical 
systems can lead to significantly differing results. As a simple numerical illustration 
of this we consider No = 10, r = 5. For X = 2 (the value which maximizes N:) we then 
have N;' = 0.220 and (Ns) = 0.254, the difference between the two values being about 
15%. For such a situation most observations at X = 2  will yield no clusters of the 
specified size, about 1 in 4 observations will give a single cluster and a much smaller 
proportion will yield 2 clusters. If we choose for r and No values much larger than 
these, then the corresponding values of Nf and (NJ  will both be much less since the 
expression (43) for Nf behaves as 1.62/r for r>> 1. The final point to make in this 
connection is that for small values of X the proportional difference between NZ and 
(N,) can be considerably greater, but this will correspond to a much smaller value for 
both quantities. Thus for No= 10, r = 5  and X=O.1, we obtain (N5}=0.2N;' with 
N;' = 6 x 

The main point emerging from the above discussion is that quantitative differences 
between the stochastic and deterministic approaches can only become significant for 
a given cluster size when the expected number of clusters of that size within the system 
is < I .  Although in most practical aerosol or hydrosol problems this will not be the 
case, it may be so for very large clusters or for laboratory situations in, which No is 
relatively small. 
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Appendix 1 

We proceed to prove that if g ( N )  is any polynomial in N and if (g (X) )  is expanded 
as a power series in V-' ,  then 

(Al.l) 

Let P( N, T') be the probability of there being N clusters in the whole system after 
time ~ ' = i Q t /  V =  T /  V. Then the master equation for P takes the form (Simons 1991) 

dP(N' *'I = -N(  N - I)P(N, 7') + N (  N +  l)P(N+ 1, T'). (A1.2) 
dT' 
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Letf(N) be any function of N~withf(0) andf(1) finite. Then multiplying equation 
(A1.2) byf (N)  and summing over all values of N in the interval 1 S N S m  yields 

P Donnelly and S Simons 

d(f (y) )=  ( N ( N -  l)[f(N- 1) - f ( N ) I )  d.r 

provided that all expectation values are finite. We now change the variables N and T' 

to N =  V-'N and r= VT', lettingf(N)=g(N). This gives 

-- d(g(N))- V(N(N- v-')[g(N- v-+g(N)]) 
d r  

and on expanding the right-hand side as a power series in V-' we obtain 

(A1.3) 

We now prove (A1.l) by induction and to this end we let gk denote a general polynomial 
of degree k We assume (Al.l) to hold for kss and proceed to show it to hold for 
k = s + 1. To do this we note that any polynomial of degree s + 1 can be expressed in 
the form 

g3+l(N =J2[dgSJ)/dNl+aN+b 
for suitable choice of gJ and constants a, b. Equation (A1.3) then yields to terms of 
order V-' 

(g,+J= ( N 2 z ) + a ( J ) +  b=--+- d(gs) d.r 2V ( - d N  ( N 2 -  $))+a(N+b. 

Now g,,d/dN(N'dg,/dN) and N are all polynomials of degree S s  to which the 
inductive hypothesis (Al.l) may be applied, giving 

dg,(Nd) 1 d 1 (Nd)2 d 
(g ) - 

SCl dT 6V d r  [(Nd N i  ) d N '  ((N')2%)1 
+--( 1 d  

dO(Nd) dO 

2V dXd 3 v  
to term of order V-'. Further, for any function O(Nd) 

- (Jw3  
dT 

as dNd/dr = -(N')2, and so 

(gs+h=(Nd)'dJYd 

1 d  

dgs(Nd)+(WY.d+b+-- (N')' d 1 (Nd)' d 
6V dNd [ (9-7) z ( (Nd)2%)] 

(JV ' )~  d 1 (N'))' d 
= gS+dNd) +? 3 [ (3-x) 2 - aNd - b)] 

1 d  
2V dNd 

+--(gs+l(Nd)-&- 

1 1 (Nd)' d dgei  
=gr+1W)+- 6V(Nd & ) d @ (  - ( P ) 2 =  ) 
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after a little algebra. Also result (Al.1) holds for s = 1 since it is shown in Simons 
(1991) that 

(W = P +L 3v [ - ( 33] 
and hence result (Al . l )  holds for any polynomial g k ( N ) .  

Appendix 2 

We consider here the limiting form of (2) as No+m with the initial particle volume 
vo+ 0 such that Novo remains constant at a finite non-zero value. This value will be 
4, the proportion of space occupied by particulate matter. Under these circumstances 
the volume of a single cluster is defined by a continuous variable v and the cluster 
size distribution is given by a function nd(v) such that nd(u) dv is the number of 
clusters per unit volume of space whose volumes lie between v and v+dv. 

To obtain the required limiting form we begin by rewriting (2) as 

Now, r = v / v 0 = v N o / 4 ~  and hence in the interval dv there will be d r = ( N o / p )  dv 
possible cluster sizes. The number of clusters per unit volume of space whose volumes 
lie in the interval v to u+dv is thus 

from equation (A2.1), and on identifying this with nd(u) du we obtain 

#(U) = rp-'T-2[1+(1/Jy~~)]-"~''p)-'. 

On letting No+CO, this finally gives 
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